NAME:		
DATE:		

Perform the following divisions by applying the laws of exponents. Make sure that your answers contain only positive exponents. Show all of the steps in the solutions. (5 marks each)

1.
$$\left(-125xy^{-3}x^{5}\right)^{3} \div \left(625y^{5}x^{-\frac{1}{3}}\right)^{-3}$$

2.
$$\left(-x^4y^{-3}\right)^{-2} \div \left(x^3y^2z^{\frac{1}{3}}\right)^3$$

Aug.L.

MTH - 4105 - 1
EXPONENTS AND RADICALS

NAME:	
DATE:	

Perform the following multiplications by applying the laws of exponents. Make sure that your answers contain only positive exponents. Show all of the steps in the solutions. (5 marks each)

1.
$$\left(-2x^4y^{-4}\right)^4 \times \left(16x^{-3}y^5\right)^{-1}$$

2.
$$(x^4y^{-1}z)^{\frac{3}{4}} \times (xy^2z^3)^{-3}$$

NAME:	
DATE:	

Simplify the following expressions. Make sure that your answers contain only positive exponents. Show all of the steps in the solution. (5 marks each)

1.
$$\left[\frac{a^3b^{-4}c^{\frac{2}{3}}}{8b^3c^{-1}}\right]^{-2}$$

$$2. \qquad \left[\frac{-3a^3b^{-2}}{27^2a^{-2}b^4} \right]^{-6}$$

MTH - 4105 - 1	
EXPONENTS AND RAD	ICALS

NAME:	
DATE:	

Styles.

Perform the following multiplication and division. Make sure that your answers contain only positive exponents. Show all steps in the solutions. (5 marks each)

$$1. \qquad \left(\frac{a^3}{4^2}\right)^{-2} \times \left(\frac{16}{a^2}\right)^{-3}$$

$$2. \qquad \left(\frac{9}{y^4}\right)^2 \div \left(\frac{y^4}{27}\right)^{-1}$$

NAME:		
DATE:		

1. If m is an odd positive integer, determine whether the following statements are true or false by replacing the variable with the number of your choice. (10 marks)

$A) \left(\frac{1}{2}\right)^{-m} \le \frac{1}{2}$	B) $(-2)^{-m} > 0$
True or False	True or False
$C)\left(-\frac{1}{2}\right)^{-m} \le 2$	D) $2^m > 1$
True or False	True or False

2. If 0 < a < 1, determine whether the following statements are true or false by replacing the variable with the number of your choice. (10 marks)

	$(-\frac{1}{a})^3 > 0$	$B)\left(\frac{1}{a}\right)^3 > \frac{1}{a}$
	True or False	True or False
	C) $(-a)^{-2} > 0$	D) $a < a^2 < 1$
Section of the second section is a second se		
0.4		
	True or False	True or False

MTH - 4105 - 1
EXPONENTS AND RADICALS

NAME:	
DATE:	

Perform the following multiplication and division by using scientific notation and the laws of exponents. Express your answers in scientific notation. Show all the steps in the solutions. (5 marks each)

1.
$$5 \times 10^{-7} \times 0.000 \ 000 \ 3$$

$$2. \qquad \frac{0.000 \ 0.004}{5 \times 10^7}$$

NAME:	
DATE:	Name of the state

For each question, determine whether or not the two expressions are equivalent by applying the laws of exponents. Show all of the steps in the solutions. (10 marks each)

1.
$$\left(\frac{8}{9}\right)^{-3} \times \left(\frac{27}{2}\right)^4 \times \left(\frac{16}{81}\right)^{-3}$$
 and $\left(\frac{2}{3^4}\right)^{-2} \times \left(\frac{9}{16}\right)^3 \times \left(\frac{8}{81}\right)^{-4}$

2.
$$\left(\frac{25}{8}\right)^{-4} \times \left(\frac{625}{64}\right)^3 \times \left(\frac{16}{25}\right)^2$$
 and $\left(\frac{5}{4}\right)^{-4} \times \left(\frac{625}{64}\right)^3 \times \left(\frac{8}{25}\right)^4$

NAME:		
DATE:		

1. Among the following algebraic expressions, circle those that are equivalent. In the space provided under each expression, show how you arrived at your conclusion. (10 marks)

$27a^3$	$(3a)^3$	3
		$\frac{3}{-(9a^3)}$
		- (<i>9u</i>)
g e		
1	22	3.0
$\frac{1}{(3^3 a^3)^{-1}}$	$\frac{3^2}{3^{-1}}a^3$	$\frac{3a}{a^{-2}}$
$(3^3 a^3)^3$	3 ⁻¹	a^{-2}

2. Among the following algebraic expressions, circle those that are equivalent. In the space provided under each expression, show how you arrived at your conclusion. (10 marks)

$a^3b^2 \times b^4$		$(ab^{-2})^3$		$-a^3b^6$
	ish som			
$\frac{-b^6}{a^{-3}}$		$\frac{-a^3}{\left(b^{-3}\right)^{-2}}$		$-ab^3 \times a^2b^3$
			40	

NAME:		
DATE:	47	

Perform the operations indicated in the expressions below and simplify your answers. Show all the steps in the solutions. (5 marks each)

1.
$$2\sqrt{3} - \sqrt{108} + \sqrt{48}$$

2.
$$\sqrt{96} - \sqrt{36} + \sqrt{24}$$

MTH - 4105 - 1	
EXPONENTS AT	ND RADICALS

NAME:	
DATE:	B 1

, <u>// (</u>

<u>Quiz</u>

Perform the operations indicated in the following expressions. Simplify your answers and rationalize the denominators, if necessary. Show all the steps in the solutions.

$$1. \qquad \frac{3\sqrt{48}}{-4\sqrt{72}}$$

$$2. \qquad \frac{-5\sqrt{27}}{\sqrt{45}}$$

NAME:	
DATE:	

Perform the operations indicated in the expressions. Simplify your answers and rationalize the denominators, if necessary. Show all the steps in the solutions.

$$1. \qquad \frac{-3\sqrt{6}}{2\sqrt{5}+5}$$

$$2. \qquad \frac{3\sqrt{12}}{4\sqrt{3}-3}$$

MTH - 4105 -	1
EXPONENTS	AND RADICALS

NAME:		
DATE:	1	

Perform the operations indicated in the expressions below and simplify your answers. Show all the steps in the solutions. (5 marks each)

1.
$$(3\sqrt{2}+4) \bullet (\sqrt{2}-1)$$

2.
$$(2\sqrt{2}+3) \cdot (-2\sqrt{8}-6)$$

MTH - 4105 -	1
EXPONENTS.	AND RADICALS

NAME:	
DATE:	

1. Determine whether or not the following two expressions are equivalent. Show all the steps in the solution. (10 marks)

$$(2\sqrt{3}+3)(6\sqrt{6}-3)$$
 and $3\sqrt{3}(3\sqrt{2}-2)+3\sqrt{2}(3\sqrt{3}+12)-9$

Answer: The two expressions are thus equivalent.

Yes

No 🗌

Determine whether or not the following two expressions are equivalent. Show all the steps in the solution. (10 marks) 2.

$$(3-3\sqrt{6}) \bullet (5\sqrt{6}+5)$$

nd
$$2\sqrt{6} + 2$$

and
$$2\sqrt{6} + 25 - \sqrt{24} - 100$$

Answer: The two expressions are thus equivalent.

- Yes
- No

1. Match each expression in the left-hand column with the equivalent expression in the right-hand column. In the space under each expression on the left, show how you arrived at your answers. (10 marks)

A)	$2\sqrt{2}-\sqrt{2}$

B)	$\frac{3}{4}\sqrt{48}$

	3
C	$3^{\overline{2}}$
C)	3

$$D) \qquad \frac{2}{\sqrt{3}}$$

1)
$$3\sqrt{3}$$

$$3) \qquad \frac{2\sqrt{3}}{3}$$

4)
$$\sqrt{2}$$

5)
$$2\sqrt{3}$$

6)
$$\sqrt{3}$$

Answers:

2. Match each expression in the left-hand column with the equivalent expression in the right-hand column. In the space under each expression on the left, show how you arrived at your answers. (10 marks)

A) $2\sqrt{3} \times -3\sqrt{3}$

B) $\frac{1}{2\sqrt{2}}$

C) $\frac{1}{2^{\frac{-3}{2}}}$

D) $\frac{\sqrt{18}}{3\sqrt{3}}$

1) $\frac{\sqrt{3}}{6}$

2) -18

 $3) \qquad \frac{\sqrt{2}}{4}$

4) $-6\sqrt{3}$

5) $2\sqrt{2}$

 $6) \qquad \frac{\sqrt{6}}{3}$

Answers:

- A) _____
- B) _____
- C) _____
- D)

113 Sam

Quiz

1. Determine whether or not the following two expressions are equivalent by converting them to exponential form. Show all the steps in the solution. (5 marks)

$$b\sqrt[4]{\left(\frac{1}{b}\right)^{-5}}$$
 and $(b^3)^{\frac{1}{4}} \cdot \sqrt[4]{b^6}$

Answer: The two expressions are thus equivalent.

Yes [

No 🗌

2. Determine whether or not the following two expressions are equivalent by converting them to exponential form. Show all the steps in the solution.

$$b^{\frac{5}{2}}\sqrt{b}$$
 and $\left(\frac{1}{b}\right)^{\frac{-3}{2}} \bullet \sqrt[3]{b^2}$

Answer: The two expressions are thus equivalent.

Yes

No 🗌