Nomenclature Naming Ionic Compounds Worksheet #1

In forming ionic compounds with non-metals, the transition metals *often* exhibit more than one valence. For example, in the reaction between iron and chlorine, two products are possible because iron can form an Fe³⁺ ion and an Fe²⁺ ion. The products are FeCl₃ and FeCl₂.

Some periodic tables list the different possible charges for multi-valent transition metals with the most common charge listed first.

Example 1:

Copper is a multi-valent transition metal. Its possible charges are 2+ and 1+. The more common charge is 2+.

CuCl₂ is copper (II) chloride, and CuCl is copper (I) chloride.

Example 2:

Iron is a multi-valent metal. Its possible charges are 3+ and 2+. The more common charge is 3+.

Fe₂O₃ is iron (III) oxide, and FeO is iron (II) oxide.

Note that the sum of all charges in a compound must equal zero.

If a transition metal is not multi-valent, then there is no need for the Roman numeral in parenthesis. For example, AgCl is silver chloride, and ZnCl₂ is zinc chloride.

Practice exercise:

Supply the chemical formula for the following compounds.

- 1. manganese (IV) oxide
- 2. copper (II) bromide
- 3. cobalt (II) chloride
- 4. silver nitrate
- 5. zinc sulfide
- 6. iron (III) chloride
- 7. nickel (II) oxide
- 8. copper (II) sulfate
- 9. mercury (II) sulfide
- 10. lead (IV) sulfide

Nomenclature Naming Binary Ionic Compounds

The name of a binary ionic compound is the name of the metal ion (the positively charged ion or cation) stated in full followed by the name of the non-metal ion (the negatively charged ion or anion) with the suffix –ide. For example,

AlCl₃ is aluminum chloride

CaO is calcium oxide

MgS is magnesium sulfide

Practice exercise:

If the IUPAC name is given, write the chemical formula. If the formula is supplied, write the IUPAC name.

- 1. calcium chloride
- 2. MgBr₂
- 3. aluminum fluoride
- 4. potassium iodide
- 5. BeCl₂
- 6. sodium bromide
- 7. LiCI
- 8. K₃N
- 9. calcium sulfide
- 10. MgO

Compounds with polyatomic ions

Predicting the formula of ionic compounds involving polyatomic ions is done in the same way as for binary ionic compounds.

For example, potassium nitrate is KNO₃ and calcium nitrate is Ca(NO₃)₂.

Sec 4 students should be familiar with the following polyatomic ions and charges.

Polyatomic ion	formula	charge
ammonium	NH_4^{+}	1+
hydroxide	OH ⁻	1-
nitrate	NO ₃	1-
carbonate	CO ₃ ²⁻	2-
sulfate	SO ₄ ²⁻	2-
phosphate	PO ₄ ³⁻	3-

Practice exercise:

Supply chemical formulas for the following ionic compounds.

- 1. calcium carbonate
- 2. sodium hydroxide
- 3. ammonium chloride
- 4. sodium phosphate

Nomenclature Practice Exercise

Supply the chemical formula for the following ionic compounds.

- 1. nickel (II) oxide
- 2. magnesium carbonate
- 3. zinc sulfide
- 4. aluminum oxide
- 5. iron (III) chloride
- 6. silver nitrate
- 7. lithium chloride
- 8. ammonium hydroxide
- 9. copper (II) sulfate
- 10. potassium hydroxide
- 11. calcium hydroxide
- 12. sodium phosphate
- 13. cobalt (II) chloride
- 14. silver bromide
- 15. zinc carbonate
- 16. lead (II) iodide
- 17. copper (II) bromide
- 18. calcium fluoride
- 19. iron (III) hydroxide
- 20. magnesium sulfate
- 21. magnesium sulfide
- 22. nickel (II) sulfide
- 23. ammonium nitrate

Naming binary covalent compounds

According to IUPAC rules, the prefix system is used only for naming binary covalent compounds – molecular compounds composed of only two kinds of atoms.

Prefixes used in naming covalent compounds

mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7

Exceptions to the above rule include the common molecular (covalent) compounds below:

 $\begin{array}{lll} \text{water} & \text{H}_2\text{O} \\ \text{hydrogen peroxide} & \text{H}_2\text{O}_2 \\ \text{ammonia} & \text{NH}_3 \\ \text{propane} & \text{C}_3\text{H}_8 \\ \text{octane} & \text{C}_8\text{H}_{18} \end{array}$

Practice exercise:

Supply the formula for the following molecular compounds.

- 1) nitrogen dioxide
- 2) nitrogen monoxide
- 3) sulfur dioxide
- 4) sulfur trioxide
- 5) ammonia
- 6) propane
- 7) phosphorus trichloride
- 8) phosphorus pentachloride
- 9) hydrogen peroxide
- 10) carbon monoxide

Nomenclature Practice exercise

If a formula is given, write the IUPAC name. If the name is supplied, write the chemical formula.

1.	carbon dioxide
	calcium fluoride
3.	K ₂ O
4.	Ca(OH) ₂
	K ₃ PO ₄
	ammonium chloride
7.	sulfur dioxide
8.	PCI ₃
	copper (II) nitrate
10.	iron (III) hydroxide
11.	N_2O_4
12.	NH ₃
13.	Zn(NO ₃) ₂
14.	sodium carbonate
	PCI ₅
	sulfate ion
17.	potassium
18.	carbon monoxide
19.	chloride ion
20.	mercury
	zinc oxide
	nitrate ion