Answert

GRAPHS

Type 1: Example

Functions h and i are defined below:

(1)
$$h(x) = a_1 x^2$$

where
$$a_1$$
 is > 0 $\circlearrowleft \ \ \, \preceq = \ \ \, \gtrsim^2$

Which one of the following graphs could represent h + i?

18

0

 $b(x) = a_2 x^2 + c$

Type I

Practice Exercises:

1. Functions
$$a$$
 and b are defined below:

$$a(x) = a_1 x^2 \qquad \text{where } a_1 \text{ is } < 0 \qquad = -2 \times 3$$

where a_2 is = $-a_1$ and $c > 0 = 2x^2 + 1$

Which one of the following graphs could represent a + b?

$$y = \frac{2x^2 - 1}{2x^2}$$

$$y = -1$$

2. Functions \boldsymbol{d} and \boldsymbol{e} are defined below:

$$d(x) = a_1 x^2 + c$$

where
$$a_1$$
 is >0 and c < 0

$$d(x) = a_1 x^2 + c$$
 where a_1 is >0 and $c < 0$ 0 $y = 2 x^2 - 1$

$$e(x) = a_2 x^2$$

where
$$a_2$$
 is = $-a_1$

$$e(x) = a_2 x^2 \qquad \text{where } a_2 \text{ is } = -a_1 \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc = -2 \times^2$$

Which one of the following graphs could represent d + e?

D

$$J = \frac{-2x^{2}-1}{-2x^{2}}$$

$$J = 0 - 4x^{2}$$

3. Functions j and k are defined below:

$$j(x) = a_1 x^2 + c$$

where
$$a_1$$
 is <0 and c < 0

$$j(x) = a_1 x^2 + c \qquad \text{where } a_1 \text{ is } < 0 \text{ and } c < 0 \qquad \bigcirc = -2 \times -$$

$$k(x) = a_2 x^2$$

where
$$a_2$$
 is = a_1

$$k(x) = a_2 x^2$$
 where a_2 is $= a_1$ \bigcirc $= -\bigcirc$ \nearrow

Which one of the following graphs could represent j + k?

$$y = 4x^{2} + 1$$
 $y = 4x^{2} + 1$

4. Functions g and h are defined below:

$$g(x) = a_1 x^2 + c$$

where
$$a_1$$
 is >0 and c>0

4. Functions
$$g$$
 and h are defined below:

$$g(x) = a_1 x^2 + c \qquad \text{where } a_1 \text{ is > 0 and c> 0} \qquad \bigcirc y = 2 x^2 + 1$$

$$\text{where } a_2 \text{ is = } a_1 x = 2 x^2 + 1 = 2 x^2 +$$

$$khx) = a_2 x^2$$

where
$$a_2$$
 is = a_1

Which one of the following graphs could represent g + h?

$$y = (2 \times -2)(-x + 2)$$

$$y = -2x^{2} + 4x + 2x - 4$$

$$y = -2x^{2} + 6x - 4$$

$$y = -2x^{2} + 6$$

Which one of the following graphs could represent f • g?

Which one of the following graphs could represent f • g ?

$$y = (2x-1)(-1x+4)$$

$$y = -2x^2 + 8x + 1x - 4$$

$$y = -2x^2 + 9x - 4$$

$$f(0.5,0)(0,-1)$$

$$f(0.5,0)(0,-1)$$

$$f(0.5,0)(0,-1)$$

$$f(0.5,0)(0,-1)$$

Which one of the following graphs could represent f • g?

$$3 - (-1 \times -3)$$

 $3 + 1 \times +3$
 $3 = 1 \times +6$

Type 3: Example

Functions a_1 and a_2 are defined below:

$$- S(pe \ a_1(x) = ax + b_1 \ \text{where } a < 0.2$$

where a < 0 and
$$b_1 < 0$$
 $\bigcirc y = -1 \times -3$

$$a_2(x) = b_2$$

$$a_2(x) = b_2$$
 where $b_2 = -b_1 \bigcirc y = 3$

Which one of the following graphs could represent $a_2 - a_1$?

$$= -1 \times +2 - -2$$

$$= -1 \times +4$$
> y intercept

Type 3: Practice

1. Functions b_1 and b_2 are defined below:

$$g_1(x) = ax + b_1$$
 where $a < 0$ and $b_1 > 0$ $\bigcirc \bigcirc \bigcirc \bigcirc = -1 \times +2$

$$g_2(\mathbf{x}) = b_2$$
 where $b_2 = -b_1 \odot \mathbf{y} = -\mathbf{\lambda}$

Which one of the following graphs could represent $g_1 - g_2$?

4=1x+2--2) y interpression

Type 3: Practice

2. Functions h_1 and h_2 are defined below:

$$h_1(x) = b_1$$

where
$$b_1 = -b_2$$

$$h_1(x) = b_1$$
 where $b_1 = -b_2$ $0 = -2$

$$h_2(x) = Q_x + Q_2$$

$$h_2(x) = Qx + ba$$
 where $a > 0$ and $b_2 > 0$ $y = 1 \times +2$

Which one of the following graphs could represent $h_2 - h_1$?

