Name: Shannar

- 1. Consider the following statements A O. After examining the eight graphs which follow, print each letter next to each graph to which it corresponds. The same letter may definitely be used more than once!
 - A. It has a maximum.
 - B. It has only one zero, which is negative.
 - C. It is decreasing over its entire domain.
 - D. It is decreasing if $x \in -2, \infty$].
 - E. The function is negative if $x \in [0, 2]$.
 - F. The equation of the axis of symmetry is x = h and h > 0.
 - G. The function has two zeros, one of which is the y-intercept.
 - H. It has two zeros, one which is negative and one positive.
 - I. It is increasing over its entire domain.
 - J. It is increasing if $x \in -\infty$, -2].
 - K. The range of the function is $[-3, \infty]$.
 - L The equation of the axis of symmetry is x = h and h < 0.
 - M. The equation of the axis of symmetry is x = h and h = 0.
 - N. The range of this function is $-\infty$, 2].
 - O. The domain of this function is $[-2, \infty]$.

2. A, B, C, D, E, O

* When the line douchos the edge of the graph paper we assume it goes to infinity...

4. E, F, G, K

5. E, F, H, K

6. A, H, J, M, N

7. E, H, K, M

Let's assume x-intercept here. It's ambiguous. We could also here assumed it's an asymptote...

8. B, I

2 Siv	representations	are	given	belov	٧.

A k(x): The function used to calculate the length of each side of a cube whose volume is equal to x metres cubed.

Length	=	3	volume
		-	

X	g(x)		
0	0		
	1		
. 8	2		
27	3		
64	4		

-	THE RESERVE AND PERSONS ASSESSED.	The state of the s
(c)	×	i(x)
	0	1
	1	3
	2	9
	3	27
	4	81

4				
j(x)		270		
30	. j			
30 27 24		S# 900		
24				
18	/	* 40	*	
15				
12				
9	1		23	
3/		4 5	6	X

Three of these representations correspond to the same function f_1 and two of them correspond to another function f_2 .

Indicate which representations correspond to each function.

f₁: C, D, E

fo: A B

3. Six representations are given below.

(A)

$$k(x) = |x| - 2$$

- 2

X	i(x)
-4	2
-3	1
-2	0
-1	-1
0	-2
1	- i
2	0
_	

x h(x) -4 -6 -3 -5 -2 -4 -1 -3

0

2

3

-2

-1

0

E	$\frac{f(x)}{1}$	=	X	- 2

F g(x) = The image of an element is obtained by subtracting 2 from the square of this element.

Three of these representations correspond to the same function f_1 and two of them correspond to another function f_2 .

Indicate which representations correspond to each function.

f1: A, B, C

f₂: D, E

Three of these representations correspond to the same function f_1 and two of them Correspond to another function f_2 .

Indicate which representations correspond to each function.

 $f_1: \underline{\mathsf{AC,E}}$

 f_2 : B, F