Balancing Equations Practice #2

1.
$$H_2 + O_2 \rightarrow H_2O$$

2. Na +
$$Cl_2 \rightarrow NaCl$$

3.
$$2 \text{ KClO}_3 \rightarrow \text{O}_2 + \text{KCl}$$

4.
$$Cu + 2 AgNO_3 \rightarrow Ag + Cu(NO_3)_2$$

5. Hf +
$$N_2 \rightarrow Hf_3N_4$$

6.
$$5 \text{ HNO}_3 + P \rightarrow H_3 PO_4 + NO_2 + H_2 O$$

7.
$$P_4O_{10} + H_2O \rightarrow 4H_3PO_4$$

8.
$$C_2H_5OH + O_2 \rightarrow 2CO_2 + H_2O$$

9.
$$N_2 + O_2 \rightarrow 2 N_2 O_5$$

10.
$$C_2H_2 + H_2 \rightarrow C_2H_6$$

11.
$$C_3H_8 + 5O_2 \rightarrow CO_2 + H_2O$$

12.
$$O_2 + C_4H_9OH \rightarrow 4CO_2 + H_2O$$

13. Sr +
$$2N_2 \rightarrow Sr_3N_2$$

$$14. \quad Cu_2S + 2O_3 \rightarrow Cu_2O + 2SO_2$$

15.
$$Mg_3N_2 + 3H_2O \rightarrow MgO + NH_3$$

16.
$$Cr(OH)_3 + NaOH \rightarrow NaCrO_2 + H_2O$$

17.
$$FeCl_2 + 2 Na_3PO_4 \rightarrow Fe_3(PO_4)_2 + NaCl$$

18. HCl + 2 Al
$$\rightarrow$$
 AlCl₃ + 3 H₂

19.
$$H_2SO_4 + C \rightarrow CO_2 + 2H_2O + SO_2$$

20.
$$CaCO_3 + HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

21.
$$2 \text{ NaI} + \text{Pb(NO}_3)_2 \rightarrow \text{PbI}_2 + \text{NaNO}_3$$

22.
$$NH_3 + O_2 \rightarrow 6H_2O + NO$$

23.
$$C_2H_5OH + 3O_2 \rightarrow CO_2 + H_2O$$

24.
$$H_2O_2 \rightarrow 2 H_2O + O_2$$

25.
$$\text{CuO} + \text{NH}_3 \rightarrow \text{N}_2 + 3 \text{H}_2\text{O} + 3 \text{Cu}$$

26.
$$2 \text{ ZnS} + 3 \text{ O}_2 \rightarrow \text{ZnO} + \text{SO}_2$$

27.
$$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + H_2O$$

28.
$$BiCl_3 + 3H_2S \rightarrow HCl + Bi_2S_3$$

29. Choose the balanced equation

A)
$$2 \text{ KOH} + \text{H}_2\text{SO}_4 \rightarrow \text{H}_3\text{O} + \text{K}_2\text{SO}_4$$

B)
$$KOH + H_2SO_4 \rightarrow H_2O + K_2SO_4$$

C) KOH +
$$H_2SO_4 \rightarrow OHSO_5 + KH_2$$

D)
$$2 \text{ KOH} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{ H}_2\text{O} + \text{K}_2\text{SO}_4$$

30. Choose the balanced equation

A)
$$2 \text{ HCl} + \text{NaOH} \rightarrow \text{NaCl} + \text{H}_2\text{O}$$

B)
$$HCl + NaOH \rightarrow NaCl + 2 H_2O$$

C)
$$HCl + NaOH \rightarrow NaCl + H_2O$$

D)
$$HCl + 2 NaOH \rightarrow 2 NaCl + 2 H_2O$$

31. Which equation **is not** balanced?

A)
$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

B)
$$2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$$

C)
$$H_3PO_4 + 3 KOH \rightarrow K_3PO_4 + 3 H_2O$$

D)
$$3 \text{ HBr} + \text{Fe}(OH)_3 \rightarrow \text{FeBr}_3 + 6 \text{ H}_2O$$

32. Which **equations** are balanced?

A)
$$CH_4 + 3 O_2 \rightarrow CO_2 + 2 H_2O$$

B)
$$4 C_2 H_5 + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O_2$$

C)
$$C_3H_8 + 2 O_2 \rightarrow 3 CO_2 + 4 H_2O$$

D)
$$C_4H_8 + 6 O_2 \rightarrow 4 CO_2 + 4 H_2O$$

33. The complete reaction of 8 g of methane (CH₄) with 71 g of chlorine gas (C1₂) produces 73 g ofhydrochloric acid (HCl) and a certain amount of carbon (C).

The balanced equation for this reaction is as follows:

$$CH_4 + 2 C1_2 \rightarrow C + 4 HC1$$

What mass of carbon is produced by this reaction?

34. When 191 g of copper, Cu, is combined with 756 g of nitric acid, HNO₃, the chemical reaction produces 563 g of copper nitrate, Cu(NO₃)₂, 108 g of water, H₂O, and a certain amount of 'nitrogendioxide, NO₂. This reaction is represented by the following balanced chemical equation:

$$Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$$

What mass of nitrogen dioxide does this reaction produce?

35. The neutralization of 24.5 g of sulphuric acid (H₂SO₄) requires 42 g of sodium bicarbonate (NaHCO₃). This neutralization reaction produces 35.5 g of sodium sulphate (Na₂SO₄), 22 g of carbon dioxide (CO₂) and a certain amount of water (H₂O).

The balanced equation for this reaction is:

$$H_2SO_4 + 2NaHCO_3 \rightarrow Na_2SO_4 + 2CO_2 + 2H_2O$$

What is the mass of the water produced during this neutralization reaction?

36. The combustion of 16 g of methane (CH₄) in 64 g of oxygen gas (O₂) produces 36 g of water (H₂O)and a certain mass of carbon dioxide (CO₂). The following balanced equation represents this combustion reaction:

Combustion Reaction Involving Methane

$$CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$$

The combustion of 11 g of propane (C₃H₈) in 40 g of oxygen gas (O₂) produces 18 g of water (H₂O) and a certain mass of carbon dioxide (CO₂). The following balanced equation represents this combustion reaction:

Combustion Reaction Involving Propane

$$C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$$

Which of these two reactions produces the smaller mass of carbon dioxide (CO₂)? For each reaction, show the calculations required to determine the mass of carbon dioxide (CO₂) produced.