- e.g.1 A function is described by the following rule: $f(x) = \frac{-2x}{7} + 1$
 - a) Determine over which interval this function is positive.

Answer:

b) Determine the rate of change of this function.

Answer:

I. You try:

- 1. A function is described by the following rule: $f(x) = \frac{-4x}{5} + 2$
 - a) Determine over which interval this function is positive.

Answer:

b) Determine the rate of change of this function.

Answer:

- 2. A function is described by the following rule: $f(x) = \frac{-3x}{5} + 2$
 - a) Determine over which interval this function is positive.

Answer:

b) Determine the rate of change of this function.

3.	A function is described by the following rule:	f(x) =	$\frac{-5x}{6} + 3$	3
----	--	--------	---------------------	---

a) Determine over which interval this function is positive.

Answer:

b) Determine the rate of change of this function.

Answer:

4. A function is described by the following rule: $f(x) = \frac{-3x}{4} + 2$

a) Determine over which interval this function is positive.

Answer:

b) Determine the rate of change of this function.

Answer:

5. A function is described by the following rule:
$$f(x) = \frac{-2x}{5} + 3$$

a) Determine over which interval this function is positive.

Answer:

b) Determine the rate of change of this function.

e.g. 2	A function is described by the following rule:	$f(x) = \frac{2x}{3} - 1$
--------	--	---------------------------

a) Determine over which interval this function is negative.

Answer:

b) Determine the rate of change of this function.

Answer:

II. You try:

- 1. A function is described by the following rule: $f(x) = \frac{3x}{4} 1$
 - a) Determine over which interval this function is negative.

Answer:

b) Determine the rate of change of this function.

Answer:

- 2. A function is described by the following rule: $f(x) = \frac{4x}{3} 2$
 - a) Determine over which interval this function is negative.

Answer:

b) Determine the rate of change of this function.

3.	A function is described by the following rule:	$f(x) = \frac{5x}{6} - 2$
----	--	---------------------------

a) Determine over which interval this function is negative.

Answer:

b) Determine the rate of change of this function.

Answer:

4. A function is described by the following rule: $f(x) = \frac{5x}{4} - 2$

a) Determine over which interval this function is negative.

Answer:

b) Determine the rate of change of this function.

Answer:

5. A function is described by the following rule:
$$f(x) = \frac{6x}{5} - 3$$

a) Determine over which interval this function is negative.

Answer:

b) Determine the rate of change of this function.

	e.g.	A function is described by the following rule: $f(x) = -x^2 + 4$
		a) Determine the interval over which this function is positive.
		Answer:
		b) Determine the interval over which this function is decreasing.
		Answer:
III.	You	try:
	1.	A function is described by the following rule: $f(x) = -x^2 + 16$
		a) Determine the interval over which this function is positive.
		Answer:
		b) Determine the interval over which this function is decreasing.
		Answer:
	2.	A function is described by the following rule: $f(x) = -x^2 + 1$
		a) Determine the interval over which this function is positive.
		Answer:
		b) Determine the interval over which this function is decreasing.
		Answer:
	3.	A function is described by the following rule: $f(x) = -x^2 + 25$
		a) Determine the interval over which this function is positive.
		Answer:
		b) Determine the interval over which this function is decreasing.
		Answer:

4.	A function is described by the following rule: $f(x) = -x^2 + 36$
	a) Determine the interval over which this function is positive.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:
5.	A function is described by the following rule: $f(x) = -x^2 + 49$
	a) Determine the interval over which this function is positive.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:
e.g.	A function is described by the following rule: $f(x) = x^2 - 4$
	a) Determine the interval over which this function is negative.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:
You	try:
1.	A function is described by the following rule: $f(x) = x^2 - 1$
	a) Determine the interval over which this function is negative.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:

II.

2.	A function is described by the following rule: $f(x) = x^2 - 16$
	a) Determine the interval over which this function is negative.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:
3.	A function is described by the following rule: $f(x) = x^2 - 25$
	a) Determine the interval over which this function is negative.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:
4.	A function is described by the following rule: $f(x) = x^2 - 36$
	a) Determine the interval over which this function is negative.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:
_	
5.	A function is described by the following rule: $f(x) = x^2 - 49$
	a) Determine the interval over which this function is negative.
	Answer:
	b) Determine the interval over which this function is decreasing.
	Answer:

I.
$$(1)$$
 (1) (2) (3) (4) (4) (4) (5) $($

② a)
$$\times \mathcal{E} - \infty, \frac{10}{3}$$

b) $-\frac{3}{5}$

$$T$$
. O a) $\times \xi - \infty, \frac{4}{3}$

(3) a)
$$\times \xi - \infty, \frac{12}{5}$$
]
b) $\frac{5}{6}$

$$(9)$$
 a) $\times (2-\infty, \frac{8}{5})$
b) $\frac{5}{4}$

(5)
$$\omega$$
) $\times \varepsilon - \omega$, $\frac{5}{2}$]
b) $\frac{6}{5}$

(3) a)
$$\times \mathcal{E}\left[-5,5\right]$$

b) $\times \mathcal{E}\left[-\infty,0\right]$