\qquad
\qquad

MOLARITY WORKSHEET \#1

For each of the following problems, use proper units and show ALL work:

1. If 10.7 grams of $\mathrm{NH}_{4} \mathrm{Cl}$ is dissolved in enough water to make 800 mL of solution, what will be its molarity? (Answer: $0.25 \mathrm{~mol} / \mathrm{L}$).
2. Calculate the molarity of a solution prepared by dissolving 6.80 grams of AgNO_{3} in enough water to make 2.50 liters of solution. (Answer: $\mathbf{0 . 0 1 6 ~ \mathbf { m o l } / \mathrm { L }) .}$
3. How many moles of CaCl_{2} are required to prepare 2.00 liters of $0.700 \mathrm{M} \mathrm{CaCl}_{2}$? (Answer: 1.4 moles).
4. What mass, in grams, of CaCl_{2} will be required to prepare the above solution? (Answer: 155 grams).
5. How many grams of KNO_{3} will be required to prepare 800 mL of $1.40 \mathrm{M} \mathrm{KNO}_{3}$? (Answer: 113 grams).
6. Calculate the volume of a 1.25 M solution of HCN made from 31.0 grams of HCN . (Answer: 0.919 Liters).
7. Calculate the volume of a 3.50 molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ made from 49.0 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$. (Answer: 0.143 Liters).
8. How many sugar molecules are present in 300 mL of a 2.0 M solution? (The formula for sugar is $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) (Answer: $\mathbf{3 . 6 \times 1 0 ^ { 2 3 }}$ molecules).
9. Your teacher asks you to prepare 500 mL of a 2.75 molar solution of NaCl for an upcoming laboratory experiment. Write a step-by-step procedure describing how you would carry out this task.
\qquad
\qquad

MOLARITY WORKSHEET \#1
For each of the following problems, use proper units and show ALL work:

1. If 10.7 grams of $\mathrm{NH}_{4} \mathrm{Cl}$ is dissolved in enough water to make 800 mL of solution, what will be its molarity? (Answer: $0.25 \mathrm{~mol} / \mathrm{L}$).

$$
\begin{aligned}
& M=\frac{\text { mols }^{(\text {(solute })}}{L(\text { sol'n) }}=\frac{10.7 \mathrm{~g} \mathrm{WH} H_{4} \mathrm{Cl} /\left(53.5 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl} / \mathrm{mul} \mathrm{NH}\right.}{4 \mathrm{Cl})} \\
& 0.800 \mathrm{~L} \\
&=0.25 \mathrm{~mol} / \mathrm{L}=0.25 \mathrm{M}
\end{aligned}
$$

2. Calculate the molarity of a solution prepared by dissolving 6.80 grams of AgNO_{3} in enough water to make 2.50 liters of solution. (Answer: $0.016 \mathrm{~mol} / \mathrm{L}$).

$$
M=\frac{6.80 \mathrm{~g} \mathrm{AgNO}}{3}\left(169.88 \mathrm{~g} \mathrm{AgNO}_{3} / \mathrm{mol}\left(\mathrm{AsNO}_{3}\right)\right)(2.50 \mathrm{~L} \quad 0.016 \mathrm{M}
$$

3. How many moles of CaCl_{2} are required to prepare 2.00 liters of $0.700 \mathrm{M} \mathrm{CaCl}_{2}$? (Answer: 1.4 moles).

$$
\begin{aligned}
m=\frac{\text { mols } \mathrm{CaCl}_{2} ; \text { mols } \mathrm{CaCl}_{2}=M \times L}{L \operatorname{sol} n} & =0.700 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 2.00 \mathrm{~L} \\
& =1.40 \mathrm{mols}
\end{aligned}
$$

4. What mass, in grams, of CaCl_{2} will be required to prepare the above solution? (Answer: 155 grams).

$$
\begin{aligned}
g \mathrm{CaCl}_{2}=\text { mols } \mathrm{CaCl}_{2} \times \frac{110.98 \mathrm{gCaCl}}{\mathrm{~mol} \mathrm{CaCl}} & =1.40 \mathrm{molsCaCl} \\
& =\frac{110.98 \mathrm{~g} \mathrm{Cal}}{\mathrm{ColCaCl}_{2}} \\
& =155 \mathrm{~g} \mathrm{CaCl}
\end{aligned}
$$

5. How many grams of KNO_{3} will be required to prepare 800 mL of $1.40 \mathrm{M} \mathrm{KNO}_{3}$? (Answer: 113 grams).

$$
\begin{aligned}
& M=\frac{\text { mols }}{L}=\frac{g / \mathrm{MM}}{L} \text { so } g \mathrm{KNO}_{3}=M \times M M \times L \\
& g K \mathrm{gO}_{3}=1.4 \frac{\mathrm{OmOL}}{2} \times 0.800 \mathrm{C} \times \frac{101.11 \mathrm{KNO}_{3}}{\mathrm{~mol} \mathrm{KNO}_{3}} \\
&=113 \mathrm{~g} \cdot \mathrm{KNO}_{3}
\end{aligned}
$$

6. Calculate the volume of a 1.25 M solution of HCN made from 31.0 grams of HCN . (Answer: $0.91 \${ }_{7}$ Liters).

$$
\begin{aligned}
& M=\frac{\text { mols (solute) }}{L C \operatorname{Lsol} \text { 'n })} L=\frac{\text { mols }}{M}=\frac{31.0 \mathrm{~g} H \mathrm{HN}}{(27.03 \mathrm{~g} \mathrm{kcN} / \mathrm{mol}+\mathrm{tcN})} \\
& 1.25 \mathrm{mols} / 4 \mathrm{cN} / \mathrm{L}
\end{aligned}
$$

7. Calculate the volume of a 3.50 molar solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ made from 49.0 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(Answer: 0.143 Liters).

$$
\begin{aligned}
M=\frac{m_{0 l s}}{L} \Omega L=\frac{\mathrm{mols}_{2} \mathrm{SO}_{4}}{M} & =\frac{49.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} /\left(98.0 \mathrm{gg} \mathrm{H} \mathrm{SO}_{4} / \mathrm{mol}_{2} / \mathrm{H}_{4}\right)}{3.5 \mathrm{mols} / \mathrm{L}} \\
& =0.143 \mathrm{~L}
\end{aligned}
$$

8. How many sugar molecules are present in 300 mL of a 2.0 M solution? (The formula for sugar is $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) (Answer: 3.6×10^{23} molecules).

$$
\begin{aligned}
M=\frac{\text { mols }}{L} \text { a mols } C_{12 H_{z 2} O_{11}} & =M \times L \\
& =\frac{2.0 \mathrm{mols}}{L} \times 0.300 L=0.60 \mathrm{~mol}
\end{aligned}
$$

and $0.60 \mathrm{~mol} \times 6.022 \times 10^{23} \frac{\text { molecules }}{\text { mol }}=3.6 \times 10^{23}$ molecules
9. Your teacher asks you to prepare 500 mL of a 2.75 molar solution of NaCl for an upcoming laboratory experiment. Write a step-by-step procedure describing how you would carry out this task.

1. Determine mass of NaCl needed from the mols needed From $M=\frac{\operatorname{mols}(N a C l)}{L(S O l(n)}$ an mols $\left.\mathrm{Na}_{\mathrm{acl}}\right)=2.75 \frac{\mathrm{mols}(\mathrm{NaCl})}{L} \times 0.500 \mathrm{~L}$

$$
=1.38 \mathrm{~mol} \mathrm{NaCl}
$$

$$
\begin{aligned}
\mathrm{g} \mathrm{NaCl} & =1.38 \mathrm{~mol} \mathrm{NaCl} \times 58.44 \mathrm{~g} \mathrm{NaCl} \\
& =80.6 \mathrm{~g} \mathrm{NaCl}
\end{aligned}
$$

2. Weigh out 80.6 g NaCl
3. Add the salt to a 500 mL volumetric Flask
4. Add deimired $\mathrm{H}_{2} \mathrm{O}$ to the mark in the reck of the thank
