MOLARITY WORKSHEET #1

For each of the following problems, use proper units and show ALL work:

1. If 10.7 grams of NH₄Cl is dissolved in enough water to make 800 mL of solution, what will be its molarity? (Answer: 0.25 mol/L).

2. Calculate the molarity of a solution prepared by dissolving 6.80 grams of $AgNO_3$ in enough water to make 2.50 liters of solution. (Answer: 0.016 mol/L).

3. How many moles of $CaCl_2$ are required to prepare 2.00 liters of 0.700 M $CaCl_2$? (Answer: 1.4 moles).

4. What mass, in grams, of $CaCl_2$ will be required to prepare the above solution? (Answer: 155 grams).

5. How many grams of KNO₃ will be required to prepare 800 mL of 1.40 M KNO₃? (Answer: 113 grams).

6. Calculate the volume of a 1.25 M solution of HCN made from 31.0 grams of HCN. (Answer: 0.919 Liters).

7. Calculate the volume of a 3.50 molar solution of H_2SO_4 made from 49.0 grams of H_2SO_4 . (Answer: 0.143 Liters).

8. How many sugar molecules are present in 300 mL of a 2.0 M solution? (The formula for sugar is $C_{12}H_{22}O_{11}$) (Answer: 3.6 x 10²³ molecules).

9. Your teacher asks you to prepare 500 mL of a 2.75 molar solution of NaCl for an upcoming laboratory experiment. Write a step-by-step procedure describing how you would carry out this task.

Period	

MOLARITY WORKSHEET #1

For each of the following problems, use proper units and show ALL work:

1. If 10.7 grams of NH₄Cl is dissolved in enough water to make 800 mL of solution, what will be its molarity? (Answer: 0.25 mol/L).

$$M = \frac{mols (solute)}{L (sol'n)} = \frac{10.79 WH4CI/(53.59 NH4CI/mol NH4CI)}{0.800L}$$

= 0.25 mol/L = 0.25 M
02

2. Calculate the molarity of a solution prepared by dissolving 6.80 grams of $AgNO_3$ in enough water to make 2.50 liters of solution. (Answer: 0.016 mol/L).

3. How many moles of CaCl₂ are required to prepare 2.00 liters of 0.700 M CaCl₂? (Answer: 1.4 moles).

4. What mass, in grams, of CaCl₂ will be required to prepare the above solution? (Answer: 155 grams).

5. How many grams of KNO₃ will be required to prepare 800 mL of 1.40 M KNO₃? (Answer: 113 grams).

$$M = \frac{mols}{L} = \frac{\sqrt{mm}}{L} \qquad so \quad g \\ KNO_3 = M \times MM \times L$$

$$g \\ g \\ KNO_3 = 1.4 \\ O \\ mol \\ E \\ mol \\ E \\ NO_3 \\ = 113 \\ g \\ KNO_3$$

Name _

6. Calculate the volume of a 1.25 M solution of HCN made from 31.0 grams of HCN. (Answer: 0.919 Liters).

7. Calculate the volume of a 3.50 molar solution of H_2SO_4 made from 49.0 grams of H_2SO_4 . (Answer: 0.143 Liters).

 How many sugar molecules are present in 300 mL of a 2.0 M solution? (The formula for sugar is C₁₂H₂₂O₁₁) (Answer: 3.6 x 10²³ molecules). MM_{GIZ}H₂₂O₁₁ = 342.34 g GIZH₂₂O₁₁

$$M = \frac{\text{mols}}{L} \quad \text{mols GizHzzO_{11}} = M \times L$$

$$= \frac{2.0 \text{ mols}}{L} \times 0.300 L^{2} \quad 0.60 \text{ mol}$$
and 0.60 mol × 6.022 × 10²³ molecules

$$= \frac{3.6 \times 10^{23} \text{ molecules}}{1000}$$

9. Your teacher asks you to prepare 500 mL of a 2.75 molar solution of NaCI for an upcoming laboratory experiment. Write a step-by-step procedure describing how you would carry out this task.