Ionic and Molecular Dissolution

Dissolution:

is the phenomenon by which the constituent parts of a substance (e.g. sugar) separate and merge with the constituent parts of the substance with which they come into contact (e.g. water) to form a mixture of perfectly uniform composition (e.g. sugar water). ("dissolving" is the same thing as "dissolution")

2 types of dissolution:

1) molecular dissolution

2) ionic dissolution

Molecular Dissolution

- This is what it is called when a covalent compound (nonmetals only; e.g. sugar, alcohol, etc.) is dissolved in water.
- The molecules remain intact (they do not break apart).
- The molecules spread out and become distributed among the H₂O molecules.
- · This solution will not conduct electricity because there are no ions present.

Molecular dissolution

 a) In a water and sugar solution, the sugar molecules (C₁₂H₂₂O₁₁) disperse in the water but remain intact.

b) In a solution of water and ethyl alcohol, the alcohol molecules (C₂H₅OH) disperse in the water but remain intact.

Ionic Dissolution

- · This is what it is called when an ionic compound (acid, base, or salt) is dissolved in water.
- The ionic compound breaks apart (dissociates) into its constituent ions.

e.g. of salt: NaCl(s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺(aq) + Cl⁻(aq)

e.g. of acids:
$$HCl(1) \xrightarrow{i_2 0} H^+(aq) + Cl^-(aq)$$

$$HNO_3(1) \xrightarrow{H_2O} H^+(aq) + NO_3(aq)$$

e.g. of base: NaOH(aq)
$$\xrightarrow{H_2O}$$
 Na⁺(aq) + OH⁻(aq)

(the above are called dissociation equations)

lonic dissolution

a) In a solution of salt water, the salt dissociates into positive ions (Na+) and negative ions (Cl-) which are dispersed in the water.

b) In a solution of hydrochloric acid, the acid dissociates into positive ions (H+) and negative ions (Cl-) which are dispersed in the water.

<u>Electrolyte</u>: is any substance that conducts electricity when dissolved in water. e.g. acid, base, or salt dissolved in water

strong electrolyte: conducts electricity extremely well.
 e.g. HCl, H₂SO₄(strong acid), NaOH(strong acid), NaCl
 N.B. the reason that a strong electrolyte conducts electricity well is that <u>all</u> of the ions are freed to float around in the water. (see also picture of strong acid below)

- weak electrolyte: conducts electricity very little e.g. acetic acid (weak acid), ammonia (weak base)
 - N.B. the reason that a weak electrolyte conducts electricity poorly is that very few ions are freed to float around. (see picture for weak acid below)
- strong acid: is an acid that completely dissociates (all of the ions are freed to float around).
 e.g. HCl, H₂SO₄ A strong acid is a strong electrolyte.

 $\rm H_2SO_4$ (sulphuric acid) is one of the acids responsible for acid rain. Upon contact with water, it dissociates into positive ions (H+) and negative ions (SO₄-2) which disperse into the clouds.

 weak acid: is an acid in which very few of the ions are freed to float around. This is a weak electrolyte.
 e.g. CH₃COOH

In a solution of acetic acid (CH $_3$ COOH), only a few of the molecules dissociate into H $^+$ and CH $_3$ COO $^-$ ions. The rest of the molecules remain intact. Acetic acid is a weak electrolyte.

- strong base: is a base that completely dissociates. This is a strong electrolyte.
 e.g. NaOH
- weak base: is a base in which very few of the ions are freed to float around.
 e.g. NH₄OH

Problem: The following table shows the results for liquids tested:

Tests	A	В	C	D	E	F	G	H
Conducts current	no	+++	+++	+	+++	+	+	+++
red litmus turns/remains	red	red	blue	blue	blue	red	red	red
blue litmus turns/remains	blue	blue	red	blue	blue	red	blue	red

- 1. Which solution/s is/are:
 - a) neutral and weak electrolyte?
 - b) neutral and strong electrolyte?
 - c) neutral and nonelectrolyte?
 - d) base and weak electrolyte?
 - e) base and strong electrolyte?
 - f) acid and weak electrolyte?
 - g) acid and strong electrolyte?

2. For which liquid are the test results obviously inaccurate?