Find the X-Intercepts

In order to find the **x-intercepts**, we must let $\mathbf{y} = \mathbf{0}$. If $\mathbf{y} = \mathbf{0}$, then we can solve the quadratic equation in order to find the x values. We can solve the quadratic equation by **factoring** or by using the **quadratic formula**.

This equation can be factored pretty easily, so it would be quicker to factor the equation in order to solve for \mathbf{x} .

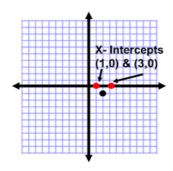
$y = x^2 - 4x + 3$

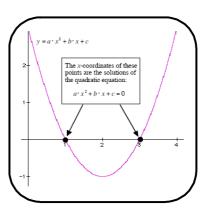
(x-3)(x-1)

Factor the equation.

x-3=0 x-1=0

Set each factor equal to 0. (The Zero


Factor property)


x = 3

x = 1

Solve each equation.

The x-intercepts are (3,0) and (1,0)

Example 1: Solve

$$x^2 + 4x - 5 = 0$$

Step 1: Write the equation in standard form:	$x^2 + 4x - 5 = 0$
Step 2: Factor completely.	(x+5)(x-1)=0
Step 3: Apply the Zero Product Rule	x + 5 = 0 or $x - 1 = 0$
Step 4: Solve the linear equations in step 3.	x = -5 or $x = 1$

Example 2: Solve

$$3x^2 + 13x = 10$$

Step 1: Write the equation in standard form:	$3x^2 + 13x - 10 = 0$		
Step 2: Factor completely.	(x+5)(3x-2)=0		
Step 3: Apply the Zero Product Rule	x + 5 = 0 or $3x - 2 = 0$		
Stan 4. Colus the linear equations is stan	$x = -5 \qquad 3x - 2 = 0$		
Step 4: Solve the linear equations in step 3.	3x = 2		
	$x = \frac{2}{3}$		