Stoichiometry
 Worksheet \#1

Problem \#1

Copper (II) oxide can be produced in the lab by the following reaction

$$
2 \mathrm{Cu}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CuO}
$$

A technician heats 5.00 g Cu powder in an open crucible. How many grams of CuO will be produced?

Problem \#2

Methane gas, CH_{4}, reacts with water vapour at elevated temperatures to produce hydrogen and carbon monoxide as illustrated by the following balanced equation

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2}+\mathrm{CO}
$$

What mass of methane is required to produce 125 g of H_{2} ?

Problem \#3

Air bags inflate rapidly in the event of a crash, cushioning the front seat occupants against impact. The reaction is represented by the following equation in which sodium azide, NaN_{3}, decomposes

$$
2 \mathrm{NaN}_{3} \rightarrow 2 \mathrm{Na}+3 \mathrm{~N}_{2}
$$

Determine the mass of N_{2} produced when $100.0 \mathrm{~g} \mathrm{NaN}_{3}$ decomposes.

Problem \#4

In the process photosynthesis, plants convert $\mathrm{CO}_{2}(\mathrm{~g})$ into $\mathrm{O}_{2}(\mathrm{~g})$ in the presence of daylight. The equation below represents this process.
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
How many grams of O_{2} can be obtained when $11.0 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ reacts?

Answers

1. 6.26 g
2. 331 g
3. 64.63 g
4. 8.00 g
