Stoichiometry
 Worksheet \#2

1. What mass of carbon dioxide is produced when 96.1 grams of propane is reacted with oxygen?

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

2. At high temperatures, ammonia gas, $\mathrm{NH}_{3}(\mathrm{~g})$, reacts with oxygen gas to form gaseous nitric oxide, $\mathrm{NO}(\mathrm{g})$, and water vapour. The balanced chemical equation for this reaction is

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A chemistry technician reacts 1.00 kg of NH_{3} and obtains $1.40 \times 10^{3} \mathrm{~g} \mathrm{NO}(\mathrm{g})$. Calculate the percent yield for this activity.
3. Methanol, also called methyl alcohol, can be manufactured by combination of carbon monoxide and hydrogen.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})
$$

Suppose $8.60 \mathrm{~kg} \mathrm{H}_{2}(\mathrm{~g})$ is reacted and $35.7 \mathrm{~kg} \mathrm{CH}_{3} \mathrm{OH}$ is actually produced. What is the percent yield of methanol?
4. Hydrogen peroxide is sometimes used as an oxygen source for the treatment of municipal water.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

Calculate the mass of water and of oxygen that can be obtained from the complete decomposition of $7.30 \times 10^{4} \mathrm{~g}$ of hydrogen peroxide.
5. Aluminum reacts with bromine, producing aluminum bromide, as illustrated in the reaction below

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{AlBr}_{3}(\mathrm{~s})
$$

In a certain experiment, 6.00 g aluminum reacted and 53.0 g aluminum bromide was obtained. Calculate the theoretical yield of AlBr_{3} and the percent yield for this experiment.

Answers

1. 288 g
2. 80%
3. 52%
4. $3.44 \times 10^{4} \mathrm{~g} \mathrm{O}_{2}$ and $3.87 \times 10^{4} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
5. $59.3 \mathrm{~g}, 89.4 \%$
