Stoichiometry

Worksheet \#3

1. Ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, burns with a pale blue flame. The products of this combustion are CO_{2} and water vapour as indicated by the balanced equation below

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A combustion reaction produced $65.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. What mass of ethyl alcohol was used? answer: 55.37 g
2. Methanol, $\mathrm{CH}_{3} \mathrm{OH}$, can be manufactured by combination of gaseous hydrogen and carbon monoxide, as indicated by the equation below

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})
$$

What mass of $\mathrm{CO}(\mathrm{g})$ is required to react with $85.0 \mathrm{~g} \mathrm{H}_{2}(\mathrm{~g})$? answer: 589 g
3. Sodium bicarbonate, NaHCO_{3}, also known as baking soda, decomposes according to the balanced equation below

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})
$$

A technician decomposes $6.50 \mathrm{~g} \mathrm{NaHCO}_{3}$ at a high temperature and obtains 3.88 g $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Calculate the percent yield for his activity. Answer: 95%
4. Nitrogen gas, N_{2}, can be prepared by the following reaction

$$
2 \mathrm{NH}_{3}+3 \mathrm{CuO} \rightarrow \mathrm{~N}_{2}+3 \mathrm{Cu}+3 \mathrm{H}_{2} \mathrm{O}
$$

a) Suppose $20.0 \mathrm{~g} \mathrm{NH}_{3}$ reacts. How many Cu atoms will be produced? Answer: $1.06 \times 10^{24} \mathrm{Cu}$ atoms
b) Suppose 20.0 g NH reacts. How many N_{2} molecules will be produced?

Answer: $3.53 \times 10^{23} \mathrm{~N}_{2}$ molecules

Honours class

5. If the percent yield of the reaction below is 98.5%, then what mass of $\mathrm{N}_{2} \mathrm{H}_{4}$ is needed to produce 49.0 grams of NO_{2} ? Answer: 17.3 g

$$
\mathrm{N}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

