Stoichiometry Worksheet #3

1. Ethyl alcohol, C_2H_5OH , burns with a pale blue flame. The products of this combustion are CO_2 and water vapour as indicated by the balanced equation below

 $C_{2}H_{5}OH\;(I)\;+\;\;3\;O_{2}\;(g)\;\;\rightarrow\;\;2\;CO_{2}\;(g)\;+\;\;3\;H_{2}O\;(g)$

A combustion reaction produced 65.0 g H_2O (g). What mass of ethyl alcohol was used? answer: 55.37 g

2. Methanol, CH₃OH, can be manufactured by combination of gaseous hydrogen and carbon monoxide, as indicated by the equation below

 $2 H_2(g) + CO(g) \rightarrow CH_3OH(I)$

What mass of CO (g) is required to react with 85.0 g H₂ (g)? answer: 589 g

3. Sodium bicarbonate, NaHCO₃, also known as baking soda, decomposes according to the balanced equation below

 $2 \text{ NaHCO}_3 (s) \rightarrow \text{CO}_2 (g) + \text{H}_2 O (g) + \text{Na}_2 \text{CO}_3 (s)$

A technician decomposes 6.50 g NaHCO₃ at a high temperature and obtains 3.88 g Na₂CO₃. Calculate the percent yield for his activity. Answer: 95%

4. Nitrogen gas, N₂, can be prepared by the following reaction

 $2 \hspace{0.1cm} \text{NH}_3 \hspace{0.1cm} + \hspace{0.1cm} 3 \hspace{0.1cm} \text{CuO} \hspace{0.1cm} \rightarrow \hspace{0.1cm} \text{N}_2 \hspace{0.1cm} + \hspace{0.1cm} 3 \hspace{0.1cm} \text{Cu} \hspace{0.1cm} + \hspace{0.1cm} 3 \hspace{0.1cm} \text{H}_2 \text{O}$

a) Suppose 20.0 g NH₃ reacts. How many Cu atoms will be produced? Answer: 1.06 x 10^{24} Cu atoms b) Suppose 20.0 g NH₃ reacts. How many N₂ molecules will be produced? Answer: 3.53 x 10^{23} N₂ molecules

Honours class

5. If the percent yield of the reaction below is 98.5%, then what mass of N_2H_4 is needed to produce 49.0 grams of NO_2 ? Answer: 17.3 g

 $\mathrm{N_2H_4}\left(g
ight)$ + 3 $\mathrm{O_2}\left(g
ight)$ \rightarrow 2 $\mathrm{NO_2}\left(g
ight)$ + 2 $\mathrm{H_2O}\left(g
ight)$